Thermal Tolerance of Horned and Polled Bali Cattle to High Ambient Temperature and Exercise Provision
DOI:
https://doi.org/10.62793/japsi.v2i1.48Keywords:
Adaptability, Bali cattle, Heat stress, Polled, Thermal toleranceAbstract
This study investigated the heat tolerance of horned and polled Bali cattle under high ambient temperatures and physical exercise using heat tolerance index parameters. Eight male Bali cattle (four horned and four polled) were observed in the morning and afternoon after walking exercises under direct sunlight. Measured parameters included the Iberian Heat Tolerance Coefficient (IHTC), Benezra’s Coefficient (BC), and panting score (PS). A 2×2 factorial design (cattle type × measurement period) was used, and data were analyzed via two-way ANOVA, followed by Duncan’s test for significant interactions (P < 0.05).Results showed no significant differences (P > 0.05) in heat tolerance indices between horned and polled cattle. IHTC (106.15 ± 9.89 vs. 102.40 ± 10.93), BC (2.22 ± 0.35 vs. 2.28 ± 0.39), and PS (0.88 ± 0.83 vs. 1.38 ± 1.06) were comparable, indicating similar physiological responses to heat. However, the measurement period significantly affected (P < 0.05) all parameters. IHTC decreased in the afternoon (96.78 ± 5.56) compared to the morning (114.78 ± 5.22), while BC (2.29 ± 0.76 vs. 1.91 ± 0.77) and PS (1.88 ± 0.64 vs. 0.38 ± 0.52) increased, suggesting cattle experienced heat stress as temperatures rose. significant interaction (P < 0.05) between cattle type and measurement period was observed. Horned cattle had the highest IHTC in the morning (117.70 ± 4.28), while polled cattle had the lowest in the afternoon (92.95 ± 4.25). Polled cattle also had the highest BC (2.64 ± 0.06) and PS (2.25 ± 0.50) in the afternoon, indicating greater heat stress susceptibility. In conclusion, while both types showed similar heat tolerance under normal conditions, polled cattle were more vulnerable to heat stress, particularly after physical exertion in the afternoon.
References
Adrial, A., Priyanto, R., Salundik, S, Yani, A., & Abdullah, L. (2023). Physiological responses of female beef cattle against peatland microclimate stress in Central Kalimantan. Jurnal Kedokteran Hewan, 17(2), 68-74. https://doi.org/10.1007/s00484-018-1629-9
Algra, M., de Keijzer, L., Arndt, S. S., van Eerdenburg, F. J. C. M., & Goerlich, V. C. (2023). Evaluation of the thermal response of the horns in dairy cattle. Animals, 13(3), 500. https://doi.org/10.3390/ani13030500
Araujo, T. G. P., Furtado, D. A., Nascimento, J. W. B., Medeiros, A. N., & Lopes Neto, J. P. (2017). Thermoregulatory responses and adaptability of Anglo-Nubian goats maintained in thermoneutral temperature and under heat stress. Journal of Animal Behavior and Biometeorology, 5(3), 106–111. https://doi.org/10.31893/2318-1265jabb.v5n3p106-111
Aritonang, S. B., Yuniati, R., Abinawanto, Imron, M., & Bowolaksono, A. (2017a). Studies of adaptive traits of Bali cattle in Buleleng District, Bali and Barru District, South Sulawesi. AIP Conference Proceedings, 1844, 060003. https://doi.org/10.1063/1.4983443
Aritonang, S. B., Yuniati, R., Abinawanto, Imron, M., & Bowolaksono, A. (2017b). Effect of thermal stress on HSP90 expression of Bali cattle in Barru District, South Sulawesi. AIP Conference Proceedings, 1862, 030104. https://doi.org/10.1063/1.4991208
Asmarasari, S. A., Azizah, N., Sutikno, S., Puastuti, W., Amir, A., Praharani, L., Rusdiana, S., Hidayat, C., Hafid, A., Kusumaningrum, D. A., Saputra, F., Talib, C., Herliatika, A., Shiddieqy, M. I., & Hayanti, S. Y. (2023). A review of dairy cattle heat stress mitigation in Indonesia. Veterinary World, 16(5), 1098–1108. https://doi.org/10.14202/vetworld.2023.1098-1108
Assatbayeva, G., Issabekova, S., Uskenov, R., Karymsakov, T., & Abdrakhmanov, T. (2022). Influence of microclimate on ketosis, mastitis and diseases of cow reproductive organs. International Journal of Biometeorology, 62(12), 2089–2097. https://doi.org/10.1007/s00484-018-1629-9
Baco, S., Malaka, R., Zulkharnaim, & Hatta, M. (2020a). The body condition and reproduction performances of Bali cattle cows through the improved feeding in the intensive management system. IOP Conference Series: Earth and Environmental Science, 492, 012101. https://doi.org/10.1088/1755-1315/492/1/012101
Baco, S., Zulkharnain, Malaka, R., & Moekti, G. R. (2020b). Polled Bali cattle and potentials for the development of breeding industry in Indonesia. Hasanuddin Journal of Animal Science (HAJAS), 2(1), 23–33. Retrieved from https://journal.unhas.ac.id/index.php/hajas/article/view/11345
Benezra, R. M. V. (1954). A new index for measuring the adaptability of cattle to tropical conditions. Journal of Animal Science, 13, 1015.
Carabaño, M. J., Logar, B., Bormann, J., Minet, J., Vanrobays, M. L., Díaz, C., et al. (2016). Modeling heat stress under different environmental conditions. Journal of Dairy Science, 99(5), 3798–3814. https://doi.org/10.3168/jds.2015-10212
Collier, R. J., Baumgard, L. H., Zimbelman, R. S., & Xiao, Y. (2019). Heat stress: Physiology of acclimation and adaptation. Animal Frontiers, 9(1), 12–19. https://doi.org/10.1093/af/vfy031
Davis, M. K., Engle, T. E., Cadaret, C. N., Cramer, M. C., Bigler, L. J., Wagner, J. J., & Edwards-Callaway, L. N. (2022). Characterizing heat mitigation strategies utilized by beef processors in the United States. Translational Animal Science, 6, 1–8. https://doi.org/10.1093/tas/txab231
dos Santos, M. M., Souza-Junior, J. B. F., Dantas, M. R. T., & de Macedo Costa, L. L. (2021). An updated review on cattle thermoregulation: Physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environmental Science and Pollution Research, 28(24), 30471–30485. https://doi.org/10.1007/s11356-021-14077-0
Ganaie, A. H., Shanker, G., Bumla, N. A., Ghasura, R. S., Mir, N. A., Wani, S. A., & Dudhatra, G. B. (2013). Biochemical and physiological changes during thermal stress in bovines. Journal of Veterinary Science and Technology, 4(1), 1–6. https://doi.org/10.4172/2157-7579.1000126
Gaughan, J. B., Mader, T. L., Holt, S. M., & Sullivan, M. L. (2010). Assessing the heat tolerance of 17 beef cattle genotypes. International Journal of Biometeorology, 54(6), 617–627. https://doi.org/10.1007/s00484-009-0233-4
Gehrke, L. J., Capitan, A., Scheper, C., König, S., Upadhyay, M., Heidrich, K., Russ, I., Seichter, D., Tetens, T., Medugorac, I., & Thaller, G. (2020). Are scurs in heterozygous polled (Pp) cattle a complex quantitative trait? Genetics Selection Evolution, 52(1), e6. https://doi.org/10.1186/s12711-020-0525-z
Glatzer, S., Merten, N. J., Dierks, C., Wöhlke, A., Philipp, U., & Distl, O. (2013). A single nucleotide polymorphism within the interferon gamma receptor 2 gene perfectly coincides with polledness in Holstein cattle. PLoS One, 8(6), e67992. https://doi.org/10.1371/journal.pone.0067992
Godde, C. M., Mason-D’Croz, D., Mayberry, D. E., Thornton, P. K., & Herrero, M. (2021). Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security, 28, 100488. https://doi.org/10.1016/j.gfs.2020.100488
Herbut, P Angrecka, S., Walczak, J. (2018). Environmental parameters to assessing of heat stress in dairy cattle—a review. International Journal of Biometeorology, 62, 2089–2097. https://doi.org/10.1007/s00484-018-1629-9
Herbut, P., Angrecka, S., Godyń, D., & Hoffmann, G. (2019). The physiological and productivity effects of heat stress in cattle – a review. Annals of Animal Science, 19(3), 579–594. https://doi.org/10.2478/aoas-2019-0011
Irmawanti, S., Luthfi, M., & Prihandini, P. W. (2022). Physiological responses of several beef cattle breeds based on environmental conditions in Beef Cattle Research Station. IOP Conference Series: Earth and Environmental Science, 1114(1), 01207. https://doi.org/10.1088/1755-1315/1114/1/01207
Knierim, U., Irrgang, N., & Roth, B. A. (2015). To be or not to be horned—Consequences in cattle. Livestock Science, 179, 29–37. https://doi.org/10.1016/j.livsci.2015.05.014
Kumari, T., Pan, S., Satapathy, D., Choudhary, R. and Sinha, B. (2018). Thermoadaptability of stud bulls using heat tolerance indices under heterologus climate. International Journal of Livestock Research, 8, 47-54. http://dx.doi.org/10.5455/ijlr.20170722054917
Lees, A. M., Lees, J. C., Sejian, V., Sullivan, M. L., & Gaughan, J. B. (2020). Influence of shade on panting score and behavioural responses of Bos taurus and Bos indicus feedlot cattle to heat load. Animal Production Science, 60(2), 305–315. https://doi.org/10.1071/AN19013
Mader, T. L., Davis, M. S., & Brown-Brandl, T. (2006). Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science, 84(3), 712–719. https://doi.org/10.2527/2006.843712x
Mandal, D. K., Rai, S., Chatterjee, A., Bhakat, C., Dutta, T. K., & Ghosh, M .K. (2018). Assessment of physiological responses and milk production in Jersey crossbred cows at different stratum of THI inside the cow barn. Indian Journal of Animal Sciences, 93(9), 916-922. https://doi.org/10.56093/ijans.v93i9.119770
Marai, I. F. M., El-Darawany, A. A., Fadiel, A., & Abdel-Hafez, M. A. M. (2007). Physiological traits as affected by heat stress in sheep: A review. Small Ruminant Research, 71(1–3), 1–12. https://doi.org/10.1016/j.smallrumres.2006.10.003
Marcone, G., Kaart, T., Piirsalu, P., & Arney, D. R. (2021). Panting scores as a measure of heat stress evaluation in sheep with access and no access to shade. Applied Animal Behaviour Science, 240, 105350. https://doi.org/10.1016/j.applanim.2021.105350
Medugorac, I., Seichter, D., Graf, A., Russ, I., Blum, H., Göpel, K. H., Rothammer, S., Förster, M., & Krebs, S. (2012). Bovine polledness--an autosomal dominant trait with allelic heterogeneity. PLoS One, 7(6), e39477. https://doi.org/10.1371/journal.pone.0039477
Morgado, J. N., Lamonaca, E., Santeramo, F. G., Caroprese, M., Albenzio, M., & Ciliberti, M. G. (2023). Effects of management strategies on animal welfare and productivity under heat stress: A synthesis. Frontiers in Veterinary Science, 10, 1145610. https://doi.org/10.3389/fvets.2023.1145610
Mota-Rojas, D., Titto, C. G., de Mira Geraldo, A., Martínez-Burnes, J., Gómez, J., Hernández-Ávalos, I., Casas, A., Domínguez, A., José, N., Bertoni, A., Reyes, B., & Pereira, A. M. F. (2021a). Efficacy and function of feathers, hair, and glabrous skin in the thermoregulation strategies of domestic animals. Animals, 11, 3472. https://doi.org/10.3390/ani11123472
Mota-Rojas, D., Titto, C. G., Orihuela, A., Martínez-Burnes, J., Gómez-Prado, J., Torres-Bernal, F., Flores-Padilla, K., Carvajal-de la Fuente, V., & Wang, D. (2021b). Physiological and behavioral mechanisms of thermoregulation in mammals. Animals, 11(6), 1733. https://doi.org/10.3390/ani11061733
Nardone, A., Ronchi, B., Lacetera, N., Ranier, M. S., & Bernabucci, U. (2010). Effects of climate change on animal production and sustainability of livestock systems. Livestock Science, 130, 57–69. https://doi.org/10.1016/j.livsci.2010.02.011
Nienaber, J. A., & Hahn, G. L. (2007). Livestock production system management responses to thermal challenges. International Journal of Biometeorology, 52, 149–157. https://doi.org/10.1007/s00484-007-0103-x
North, M. A., Franke, J. A., Ouweneel, B., & Trisos, C. H. (2023). Global risk of heat stress to cattle from climate change. Environmental Research Letters, 18(9), 094027. https://doi.org/10.1088/1748-9326/aceb79
Nussa, H. T., Aritonang, S. B., Puteri, S. A., Rahmani, A. F., Bowolaksono, A., & Lestar, R. (2018). Thermal stress effect on ATP1A1 gene expression in Bali cattle (Bos sondaicus) in Barru District, South Sulawesi. AIP Conference Proceedings, 2023, 020152. https://doi.org/10.1063/1.5064149
Osei-Amponsah, R., Dunshea, F. R., Leury, B. J., Cheng, L., Cullen, B., & Joy, A. (2020). Heat stress impacts on lactating cows grazing Australian summer pastures on an automatic robotic dairy. Animals, 10(5), 869. https://doi.org/10.3390/ani10050869
Parés-Casanova, P. M., & Caballero, M. (2014). Possible tendency of polled cattle towards larger ears. Revista Colombiana de Ciencias Pecuarias, 27, 221–225. https://doi.org/10.17533/udea.rccp.324895
Prasanna, J. S., Rao, S.T. V. , Prakash, M. G., Rathod, S., Kalyani, P., and Reddy, B. R. 2022. Indian Journal of Animal Research, 56(10):1202-1205. https://doi.org/10.18805/IJAR.B-4700
Pribadi, L. W., Suhardiani, R. A., Hidjaz, T., Ashari, M., Poerwoto, H., & Andriati, R. (2021). Physiological response of Bali and Simbal cattle to the thermal environment of lowland and highland areas in Lombok Island. Jurnal Biologi Tropis, 21(3), 648–661. http://dx.doi.org/10.29303/jbt.v21i3.2771
Pryce, J. E., Nguyen, T. T. T., Cheruiyot, E. K., Marett, L., Garner, J. B., & Haile-Mariam, M. (2022). Impact of hot weather on animal performance and genetic strategies to minimise the effect. Animal Production Science, 62(8), 726–735. https://doi.org/10.1071/AN21259
Purwantara, B., Noor, R. R., Andersson, G., & Martinez, H. R. (2012). Banteng and Bali cattle in Indonesia: Status and forecasts. Reproduction of Domestic Animals, 47(1), 2–6. https://doi.org/10.1111/j.1439-0531.2011.01956.x
Rahardja, D. P., & Lestari, V. S. (2019). Lingkungan Ternak. Universitas Terbuka, Tangerang Selatan.
Rai, V., Choudhary, P. K., Kumar, P., Maurya, P. K., Maurya, S. K., Kumar, A., & Kumar, R. (2022). Adaptability in buffaloes during spring and summer seasons in Eastern Plane Zone of Uttar Pradesh, India. Indian Journal of Veterinary Sciences and Biotechnology, 18(3), 115–118. Retrieved from https://acspublisher.com/journals/index.php/ijvsbt/article/view/2205
Rashamol, V. P., Sejian, V., Bagath, M., Krishnan, G., Archana, P. R., & Bhatta, R. (2018). Physiological adaptability of livestock to heat stress: An updated review. Journal of Animal Behaviour and Biometeorology, 6(3), 62–71. https://doi.org/10.31893/2318-1265JABB.V6N3P62-71
Renaudeau, D., Collin, A., Yahav, S., de Basilio, V., Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707–728. https://doi.org/10.1017/S1751731111002448
Renaudeau, D., Collin, A., Yahav, S., de Basilio, V., Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707–728. https://doi.org/10.1017/S1751731111002448
Rhoad, A. O. 1944. The Iberia heat tolerance test for cattle. Tropical Agriculture, 21(9). https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/5151
Romanovsky, A. A. (2018). The thermoregulation system and how it works. Handbook of Clinical Neurology, 156, 3–43. https://doi.org/10.1016/B978-0-444-63912-7.00001-1
Seixas, L., de Melo, C. B., Tanure, C. B., Peripolli, V., & McManus, C. (2017). Heat tolerance in Brazilian hair sheep. Asian-Australasian Journal of Animal Science, 30(4), 593–601. https://doi.org/10.5713/ajas.16.0191
Stumpf, M. T., Kolling, G. J., Fischer, V., Daltro, D. S., Alfonzo, E. P. M., Dalcin, V. C., Dias, L. T., da Silva, M. V. G. B., Peripolli, V., & McManus, C. M. (2021). Elevated temperature-humidity index induces physiological, blood, and milk alterations in Holstein cows in a more pronounced manner than in 1/2 and 3/4 Holstein × Gir. Journal of Animal Behaviour and Biometeorology, 9(4), 1–8. http://dx.doi.org/10.31893/jabb.21040
Suhendro I, Noor RR, Jakaria J, Priyanto R, Manalu W, and Andersson G (2024). Association of heat-shock protein 70.1 gene with physiological and physical performance of Bali cattle. Veterinary World, 17(1): 17–25. http://doi.org/10.14202/vetworld.2024.17-25
Sukandi S, Rahardja DP, Sonjaya H, Hasbi H, Baco S, Gustina S, Adiputra KDD (2023). Effect of heat stress on the physiological and hematological profiles of horned and polled Bali cattle. Advances in Animal and Veterinary Sciences, 11(6):893-902. https://dx.doi.org/10.17582/journal.aavs/2023/11.6.893.902 .
Tej, J. N. K., Uday, K., Varma, G. G & Karthiayini, K. (2020). Heat tolerance of crossbred female calves as indicated by Iberia heat tolerance coefficient, Benezara coefficient of adaptability and dairy search index. Indian Journal of Veterinary and Animal Sciences Research, 49(1), 37-43. Retrieved from https://epubs.icar.org.in/index.php/IJVASR/article/view/132145
Terrien, J., Perret, M., & Aujard, F. (2011). Behavioral thermoregulation in mammals: A review. Frontiers in Bioscience, 16, 1428–1444. https://doi.org/10.2741/3797
Tresoldi, G., Schütz, K. E., & Tucker, C. B. (2016). Assessing heat load in drylot dairy cattle: Refining on-farm sampling methodology. Journal of Dairy Science, 99(11), 8970–8980. https://doi.org/10.3168/jds.2016-11353
Wang, J., Li, J., Wang, F., Xiao, J., Wang, Y., Yang, H., Li, S., & Cao, Z. (2020). Heat stress on calves and heifers: A review. Journal of Animal Science and Biotechnology, 11, 79. https://doi.org/10.1186/s40104-020-00485-8
Zulkharnaim, Baco, S., Yusuf, M., & Rahim, L. (2017). Comparison of body dimension of Bali polled and horned cattle in South Sulawesi. International Journal of Sciences: Basic and Applied Research, 36(5), 133–139. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/8333
Zulkharnaim, Baco, S., Yusuf, M., & Rahim, L. (2020a). Morphological and mating behavioral characteristics of polled Bali cattle. IOP Conference Series: Earth and Environmental Science, 492, 012105. https://doi.org/10.1088/1755-1315/492/1/012105
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Agriprecision & Social Impact

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.